Nanoscale III-V CMOS

J. A. del Alamo

Microsystems Technology Laboratories Massachusetts Institute of Technology

SEMI Advanced Semiconductor Manufacturing Conference

Saratoga Springs, NY; May 16-19, 2016

Acknowledgements:

- Students and collaborators: D. Antoniadis, J. Lin, W. Lu, A. Vardi, X. Zhao
- Sponsors: Applied Materials, DTRA, KIST, Lam Research, Northrop Grumman, NSF, Samsung
- Labs at MIT: MTL, EBL

Contents

- 1. Motivation: Moore's Law and MOSFET scaling
- 2. Planar InGaAs MOSFETs
- 3. InGaAs FinFETs
- 4. Nanowire InGaAs MOSFETs
- 5. InGaSb p-type MOSFETs
- 6. Conclusions

1. Moore's Law at 50: the end in sight?

THE WALL STREET JOURNAL. Moore's Law Is Showing Its Age

The prediction about squeezing transistors onto silicon has been revised again.

Moore's Law is dead. Long live Moore's Law.

Moore's Law

Moore's Law = exponential increase in transistor density

Moore's Law

How far can Si support Moore's Law?

Transistor scaling \rightarrow Voltage scaling \rightarrow Performance suffers

Transistor performance saturated in recent years

Chip Price vs. Chip Cost

Increasing chip cost might bring the end to Moore's Law

Moore's Law: it's all about MOSFET scaling

1. New device structures:

Enhanced gate control \rightarrow improved scalability

Moore's Law: it's all about MOSFET scaling

2. New materials:

n-channel:

Si \rightarrow Strained Si \rightarrow SiGe \rightarrow InGaAs

p-channel:

Si \rightarrow Strained Si \rightarrow SiGe \rightarrow Ge \rightarrow InGaSb

Future CMOS might involve:

- two different channel materials
- with two different relaxed lattice constants!

del Alamo, Nature 2011 (updated)

III-V electronics in your pocket!

2. Self-aligned Planar InGaAs MOSFETs

Lin, IEDM 2012, 2013, 2014

Sun, IEDM 2013, 2014

Lee, EDL 2014; Huang, IEDM 2014

Self-aligned Planar InGaAs MOSFETs @ MIT

Lin, IEDM 2012, 2013, 2014

Recess-gate process:

- CMOS-compatible
- Refractory ohmic contacts (W/Mo)
- Extensive use of RIE

Fabrication process

- Ohmic contact first, gate last
- Precise control of vertical (~1 nm), lateral (~5 nm) dimensions
- MOS interface exposed late in process

Mo Nanoscale Contacts

Mo on $n^+-In_{0.53}Ga_{0.47}As$:

 $R_c \sim 40 \ \Omega.\mu m$ for $L_c \sim 20 \ nm$

- Need low ρ_c and $\rho_m \rightarrow$ Mo best contact system
- Average $\rho_c = 0.69 \ \Omega.\mu m^2$

Lu, EDL 2014

L_g=20 nm InGaAs MOSFET

L_g = 20 nm, L_{access}= 15 nm MOSFET → tightest III-V MOSFET made at the time

Lin, IEDM 2013

Highest performance InGaAs MOSFET

- Channel: In_{0.7}Ga_{0.3}As/InAs/In_{0.7}Ga_{0.3}As
- Gate oxide: HfO₂ (2.5 nm, EOT~ 0.5 nm)

L_g=70 nm:

• Record $g_{m,max}$ = 3.45 mS/µm at V_{ds} = 0.5 V

• $R_{on} = 190 \ \Omega.\mu m$

Lin, EDL 2016 ₁₇

Benchmarking: g_m in MOSFETs vs. HEMTs

 g_m of InGaAs MOSFETs vs. HEMTs (any V_{DD} , any L_g):

- InGaAs MOSFETs now superior to InGaAs HEMTs
- No sign of stalling \rightarrow more progress ahead!

Excess OFF-state current

OFF-state current enhanced with V_{ds} → Band-to-Band Tunneling (BTBT) or Gate-Induced Drain Leakage (GIDL) Lin, IEDM 2013

Excess OFF-state current

Planar MOSFET scaling limit

Scaling of linear subthreshold swing

- Nearly ideal electrostatic scaling behavior
- At limit of scaling around L_g~50 nm

3. InGaAs FinFETs

Intel Si Trigate MOSFETs

22 nm Process

14 nm Process

Bottom-up InGaAs FinFETs

Top-down InGaAs FinFETs

Kim, IEDM 2013

- Narrowest InGaAs FinFET fin: W_f=25 nm
- Best fin aspect ratio of InGaAs FinFET: 1
- g_m much lower than planar InGaAs MOSFETs

InGaAs FinFETs @ MIT

Key enabling technologies: BCl₃/SiCl₄/Ar RIE + digital etch

- Sub-10 nm fin width
- Aspect ratio > 20
- Vertical sidewalls

Vardi, DRC 2014, EDL 2015, IEDM 2015

InGaAs Double-Gate MOSFET

Vardi, VLSI 2016

- CMOS compatible process
- Mo contact-first process
- Fin mask left in place → double-gate MOSFET

InGaAs Double-Gate MOSFET

 L_g =30 nm, W_f =17 nm, H_c =40 nm (AR=2.3):

- g_m=1.12 mS/µm
- R_{on}=230 Ω.µm
- S_{sat}=140 mV/dec

Vardi, VLSI 2016

InGaAs FinFETs: g_m benchmarking

 g_m per width of gate periphery

- First InGaAs FinFETs with W_f<10 nm
- First InGaAs FinFETs with channel aspect ratio >1

InGaAs FinFETs: g_m benchmarking

Figure-of-merit for density: g_m per fin width

- Improved by 50% over earlier InGaAs FinFETs
- Still far below Si FinFETs → poor sidewall charge control

InGaAs FinFETs: electrostatics

Linear subthreshold swing scaling:

Close to ideal scaling reveals good quality sidewalls

Impact of fin width on \mathbf{V}_{T}

InGaAs doped-channel FinFETs: 50 nm thick, $N_D \sim 10^{18}$ cm⁻³ Oxide: AI_2O_3/HfO_2 (EOT~3 nm)

- Strong V_T sensitivity for $W_f < 10$ nm; much worse than Si
- Due to quantum effects

Vardi, IEDM 2015

4. Nanowire InGaAs MOSFETs

Tanaka, APEX 2010

Persson, EDL 2012 Tomioka, Nature 2012

- Nanowire MOSFET: ultimate scalable transistor
- Vertical NW: uncouples footprint scaling from L_q and L_c scaling

InGaAs Vertical Nanowires on Si by direct growth

Vapor-Solid-Liquid (VLS) Technique Selective-Area Epitaxy

Riel, MRS Bull 2014

InAs NWs on Si by SAE

Björk, JCG 2012

InGaAs VNW-MOSFETs fabricated via top-down approach @ MIT

Starting heterostructure:

n⁺ InGaAs, 70 nm

i InGaAs, 80 nm

n⁺ InGaAs, 300 nm

 $n^+: 6 \times 10^{19} \text{ cm}^{-3} \text{ Si doping}$

Top-down approach: flexible and manufacturable

Key enabling technologies: RIE + digital etch

- RIE = $BCI_3/SiCI_4/Ar$ chemistry
- Digital Etch (DE) = self-limiting O₂ plasma oxidation + H₂SO₄ oxide removal

- DE shrinks NW diameter by 2 nm per cycle
- Aspect ratio > 10
- Smooth sidewalls

Zhao, EDL 2014

Optimized RIE + Digital Etch

Zhao, EDL 2014

- Sub-20 nm resolution
- Aspect ratio = 16, vertical sidewall
- Smooth sidewall and surface

Tomioka, Nature 2012 Persson, DRC 2012

NW-MOSFET I-V characteristics: D=40 nm

Single nanowire MOSFET:

- L_{ch}= 80 nm
- $3 \text{ nm Al}_2\text{O}_3 (\text{EOT} = 1.5 \text{ nm})$
- $g_{m,pk}$ =620 µS/µm @ V_{DS}=0.5 V
- R_{on}=895 Ω.µm

Vertical InGaAs NW-MOSFETs Benchmark

Top-down approach as good as bottom-up approach

InGaAs VNW MOSFETs: electrostatics

Linear subthreshold swing scaling:

Close to ideal scaling reveals good quality sidewalls

5. InGaSb p-type MOSFETs

Planar InGaSb MOSFET demonstrations:

Nainani, IEDM 2010

Takei, Nano Lett. 2012

InGaSb p-type FinFETs at MIT

Key enabling technology:

- BCl₃/N₂ RIE
- [digital etch under development]

15 nm fins, AR>13

20 nm fins, 20 nm spacing

- Smallest W_f = 15 nm
- Aspect ratio >10
- Fin angle > 85°
- Dense fin patterns

Si-compatible contacts to p⁺-InAs

Ni/Ti/Pt/Al on p⁺-InAs (circular TLMs):

Record ρ_c : 3.5x10⁻⁸ Ω .cm² at 400°C

InGaSb FinFETs

Fin mask left in place \rightarrow double-gate MOSFET Channel: 10 nm In_{0.27}Ga_{0.73}Sb Gate oxide: 4 nm Al₂O₃ (EOT=1.8 nm) Gate: 45 nm Mo

InGaSb FinFETs

 $W_f = 30 - 100 \text{ nm}$ $L_g = 0.1 - 1 \mu \text{m}$ $N_f = 70$

Lu, IEDM 2015

InGaSb FinFET I-V characteristics

- $L_g = 100 \text{ nm}, W_f = 30 \text{ nm} (AR=0.33)$
- Normalized by conducting gate periphery

High current

Lu, IEDM 2015

• Poor turn-off

g_m **benchmarking**

Peak g_m at T=290K:

- First InGaSb FinFET
- Peak g_m approaches best InGaSb planar MOSFETs

Conclusions

- Great recent progress on planar, fin and nanowire III-V MOSFETs
- 2. Planar and multigate InGaAs MOSFETs exhibit nearly ideal electrostatic scaling behavior
- 3. Device performance still lacking for multigate designs
- 4. P-type InGaSb MOSFETs promising

A lot of work ahead but... exciting future for III-V electronics

